RHIC PROJECT

Brookhaven National Laboratory

Tolerance on $\Delta\theta$ Fluctuations in the Dipole

G. Parzen

Tolerance on $\Delta\theta$ Fluctuations in the Dipole G. Parzen

The fluctuation of $\Delta\theta$ along the dipole increases the effective $\Delta\theta$ to be used in computing the closed orbit effect. A result for the effective rms $\Delta\theta$ is

$$\Delta\theta_{ef}^2 = \Delta\theta_{av}^2 + \Delta\theta_f^2 \left(\Delta(\sqrt{\beta})/2\sqrt{\beta_c}\right)^2 \tag{1}$$

 $\Delta(\sqrt{\beta})$ is the change in $\sqrt{\beta}$ over L/2; L is the dipole length. $\Delta(\sqrt{\beta}) = 1.5 \text{ m}^{1/2}$ in RHIC. β_c is β at the dipole center.

 $\Delta \theta_{av}$ is the rms average $\Delta \theta$ in the dipole.

 $\Delta\theta_f$ is the rms amplitude of the $\Delta\theta$ fluctuation around the average $\Delta\theta$.

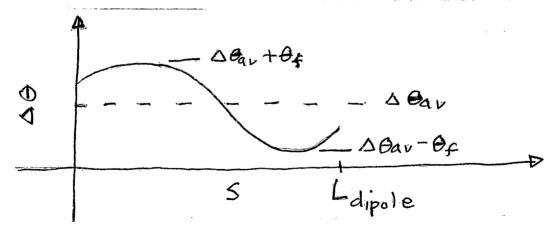
For RHIC dipoles, above gives

$$\Delta\theta_{ef}^2 = \Delta\theta_{av}^2 + (0.15 \ \Delta\theta_f)^2$$

For $\Delta\theta_f=2$ mr, rms, the $\Delta\theta_{ef}$ is increased from $\Delta\theta_{ef}=0.5$ mr rms to $\Delta\theta_{ef}=0.58$, a 17% increase. The increase in the overall $\Delta\theta_{ef}$, including the survey error of 0.5 mr rms, is 10%.

 $\Delta \theta_f$ = 2 mr rms may be a reasonable choice for a tolerance on $\Delta \theta_f$.

The above results assume a model where $\Delta\theta$ along the dipole is as shown below:



Note, the tolerance on $\Delta \theta_{av}$ would still be 0.5 mr rms.

The closed orbit error with this model can be computed from

$$\Delta y \sim \sum_{dipoles} \int ds \ \Delta \theta \ g(s)$$

$$g(s) = \sqrt{\beta} \cos (\pi \nu - (\psi - \psi_o))$$

$$\Delta\theta = \Delta\theta_{av} + \Delta\theta_f \ f(s)$$

Assuming that $\Delta \theta_{av}$ and $\Delta \theta_f$ vary randomly from dipole to dipole, and f(s) has the shape in the above figure, then one derives the above result for the rms effective $\Delta \theta$.

A more accurate result than Eq. (1) for $\Delta\theta_{ef}$, which includes the effect of the variation in the betatron phase over the dipole, is the following

$$\Delta heta_{ef}^2 = \Delta heta_{av}^2 + \Delta heta_f^2 \left[\left(rac{\Delta(\sqrt{eta})}{2\sqrt{eta}_c}
ight)^2 + \left(rac{L}{4eta_c}
ight)^2
ight]$$

The added term due to the phase variation can usually be neglected.